Search results for "synaptic vesicles"

showing 10 items of 26 documents

Regulation of Dendritic Spine Morphology in Hippocampal Neurons by Copine-6.

2015

Dendritic spines compartmentalize information in the brain, and their morphological characteristics are thought to underly synaptic plasticity. Here we identify copine-6 as a novel modulator of dendritic spine morphology. We found that brain-derived neurotrophic factor (BDNF) - a molecule essential for long-term potentiation of synaptic strength - upregulated and recruited copine-6 to dendritic spines in hippocampal neurons. Overexpression of copine-6 increased mushroom spine number and decreased filopodia number, while copine-6 knockdown had the opposite effect and dramatically increased the number of filopodia, which lacked PSD95. Functionally, manipulation of post-synaptic copine-6 level…

0301 basic medicineDendritic spineVesicular Inhibitory Amino Acid Transport Proteinsdrug effects [Synapses]Tropomyosin receptor kinase BHippocampal formationgenetics [Carrier Proteins]pharmacology [Brain-Derived Neurotrophic Factor]Hippocampusmetabolism [Vesicular Inhibitory Amino Acid Transport Proteins]Mtap2 protein ratMice0302 clinical medicineNeurotrophic factorsdrug effects [Synaptic Vesicles]genetics [Nerve Tissue Proteins]Cells Culturedultrastructure [Neurons]NeuronsChemistryLong-term potentiationSynaptic Potentialsphysiology [Neurons]physiology [Dendritic Spines]Cell biologyultrastructure [Dendritic Spines]metabolism [Receptor trkB]Synaptic VesiclesFilopodiaultrastructure [Synaptosomes]Disks Large Homolog 4 ProteinMicrotubule-Associated ProteinsCognitive NeuroscienceDendritic Spinesmetabolism [Disks Large Homolog 4 Protein]Nerve Tissue Proteinsgenetics [Receptor trkB]03 medical and health sciencesCellular and Molecular NeuroscienceOrgan Culture Techniquesphysiology [Synaptic Vesicles]metabolism [Vesicular Glutamate Transport Protein 1]TrkB protein ratdrug effects [Synaptic Potentials]Synaptic vesicle recyclingAnimalsHumansReceptor trkBddc:610metabolism [Synaptosomes]metabolism [Nerve Tissue Proteins]Viaat protein ratBrain-Derived Neurotrophic Factormetabolism [Microtubule-Associated Proteins]Rats030104 developmental biologygenetics [Synaptic Potentials]nervous systemcytology [Hippocampus]Synaptic plasticityultrastructure [Synapses]SynapsesVesicular Glutamate Transport Protein 1CPNE6 protein ratphysiology [Synapses]Carrier Proteins030217 neurology & neurosurgerymetabolism [Carrier Proteins]SynaptosomesCerebral cortex (New York, N.Y. : 1991)
researchProduct

Exosomes and other extracellular vesicles in neural cells and neurodegenerative diseases

2016

The function of human nervous system is critically dependent on proper interneuronal communication. Exosomes and other extracellular vesicles are emerging as a novel form of information exchange within the nervous system. Intraluminal vesicles within multivesicular bodies (MVBs) can be transported in neural cells anterogradely or retrogradely in order to be released into the extracellular space as exosomes. RNA loading into exosomes can be either via an interaction between RNA and the raft-like region of the MVB limiting membrane, or via an interaction between an RNA-binding protein-RNA complex with this raft-like region. Outflow of exosomes from neural cells and inflow of exosomes into neu…

0301 basic medicineNervous systemBiophysicsPresynaptic TerminalsexosomesBiologyBiochemistrySynaptic vesicleExtracellular vesicles03 medical and health sciencessynaptic vesiclesmedicineExtracellularHumansneurodegenerative diseasesNeuronsVesicleneural cellsRNACell Biologymultivesicular bodiesMicrovesiclesCell biology030104 developmental biologymedicine.anatomical_structureFunction (biology)Biochimica et Biophysica Acta-Biomembranes
researchProduct

Human R1441C LRRK2 regulates the synaptic vesicle proteome and phosphoproteome in a Drosophila model of Parkinson's disease

2016

International audience; Mutations in leucine-rich repeat kinase 2 (LRRK2) cause late-onset, autosomal dominant familial Parkinsons disease (PD) and variation at the LRRK2 locus contributes to the risk for idiopathic PD. LRRK2 can function as a protein kinase and mutations lead to increased kinase activity. To elucidate the pathophysiological mechanism of the R1441C mutation in the GTPase domain of LRRK2, we expressed human wild-type or R1441C LRRK2 in dopaminergic neurons of Drosophila and observe reduced locomotor activity, impaired survival and an age-dependent degeneration of dopaminergic neurons thereby creating a new PD-like model. To explore the function of LRRK2 variants in vivo, we …

0301 basic medicineProteomerab3 GTP-Binding Proteinsalpha-synucleindomainSyntaxin 1Interactomedopaminergic-neuronsAnimals Genetically Modifiedchemistry.chemical_compound0302 clinical medicinemicrotubule stabilityDrosophila ProteinsProtein Interaction MapsGenetics (clinical)LRRK2 GeneKinasephosphorylationBrainParkinson DiseaseArticlesGeneral Medicineautosomal-dominant parkinsonismLRRK2Drosophila melanogasterSynaptotagmin IProteomePhosphorylationSynaptic VesiclesNerve Tissue ProteinsBiologyLeucine-Rich Repeat Serine-Threonine Protein Kinase-203 medical and health sciencesGeneticsAnimalsHumansKinase activitygeneMolecular BiologyAlpha-synucleingtp-bindingDopaminergic Neuronsrepeat kinase 2Molecular biologyPhosphoric Monoester Hydrolasesnervous system diseasesDisease Models Animal030104 developmental biologyGene Expression Regulationchemistrymutation030217 neurology & neurosurgery[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

A Perspective : Active Role of Lipids in Neurotransmitter Dynamics

2019

AbstractSynaptic neurotransmission is generally considered as a function of membrane-embedded receptors and ion channels in response to the neurotransmitter (NT) release and binding. This perspective aims to widen the protein-centric view by including another vital component—the synaptic membrane—in the discussion. A vast set of atomistic molecular dynamics simulations and biophysical experiments indicate that NTs are divided into membrane-binding and membrane-nonbinding categories. The binary choice takes place at the water-membrane interface and follows closely the positioning of the receptors’ binding sites in relation to the membrane. Accordingly, when a lipophilic NT is on route to a m…

0301 basic medicinesynaptic neurotransmissionSynaptic cleftNeuroscience (miscellaneous)NeurotransmissionlipiditSynaptic vesicleSynaptic TransmissionSynaptic neurotransmissionArticlesolukalvotmembrane lipid composition (MLC)03 medical and health sciencesCellular and Molecular Neurosciencechemistry.chemical_compound0302 clinical medicineSynaptic receptormembrane-based sortingAnimalsHumansmolekyylidynamiikkaNeurotransmittermolecular dynamics (MD)Binding siteNeurotransmitterReceptorvälittäjäaineetIon channelNeurotransmitter AgentsmolekyylineurologiaMembrane lipid composition (MLC)Molecular dynamics (MD)Lipid MetabolismLipids030104 developmental biologyNeurologychemistrySynapsesBiophysicsSynaptic VesiclessynapsitMembrane-based sorting030217 neurology & neurosurgeryFunction (biology)neurotransmittersynaptic receptor
researchProduct

Synaptic release of zinc from brain slices: factors governing release, imaging, and accurate calculation of concentration.

2006

Cerebrocortical neurons that store and release zinc synaptically are widely recognized as critical in maintenance of cortical excitability and in certain forms of brain injury and disease. Through the last 20 years, this synaptic release has been observed directly or indirectly and reported in more than a score of publications from over a dozen laboratories in eight countries. However, the concentration of zinc released synaptically has not been established with final certainty. In the present work we have considered six aspects of the methods for studying release that can affect the magnitude of zinc release, the imaging of the release, and the calculated concentration of released zinc. We…

Diagnostic ImagingPyridinesColoring agentschemistry.chemical_elementZincIn Vitro TechniquesRats Sprague-DawleyPregnancyAnimalsAcido edeticoPolycyclic CompoundsRats WistarColoring AgentsEdetic AcidFluorescent DyesNeuronsExtramuralChemistryGeneral NeuroscienceTemperatureBrainOriginal dataRatsSprague dawleyZincDentate GyrusMossy Fibers HippocampalSynapsesFemaleSynaptic VesiclesNeuroscienceJournal of neuroscience methods
researchProduct

Separation of presynaptic Cav2 and Cav1 channel function in synaptic vesicle exo- and endocytosis by the membrane anchored Ca2+ pump PMCA

2021

Significance Synaptic vesicle (SV) release from presynaptic terminals requires nanometer precise control of action potential (AP)–triggered calcium influx through voltage-gated calcium channels (VGCCs). SV recycling also depends on calcium signals, though in different spatiotemporal domains. Mechanisms for separate control of SV release and recycling by AP-triggered calcium influx remain elusive. Here, we demonstrate largely independent regulation of release and recycling by two different populations of VGCCs (Cav2, Cav1), identify Cav1 as one of potentially multiple calcium entry routes for endocytosis regulation, and show functional separation of simultaneous calcium signals in the nanome…

Drosophila ; Dmca1D ; cacophony ; PMCA ; synapse0301 basic medicine570ATPasecacophonyPresynaptic TerminalsAction PotentialsEndocytosisDmca1DSynaptic vesicleExocytosis03 medical and health scienceschemistry.chemical_compoundGlutamatergicPlasma Membrane Calcium-Transporting ATPases0302 clinical medicinePMCAsynapsemedicineAnimalsDrosophila ProteinsAxonNeurotransmitterProbabilityMotor NeuronsMultidisciplinaryVoltage-dependent calcium channelbiologyCell Membrane424500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; BiologieBiological SciencesEndocytosisCell biologyElectrophysiology030104 developmental biologymedicine.anatomical_structureDrosophila melanogasterchemistryReceptors Glutamatebiology.proteinDrosophilaCalciumCalcium ChannelsSynaptic Vesicles030217 neurology & neurosurgeryNeuroscienceProceedings of the National Academy of Sciences of the United States of America
researchProduct

Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles.

1999

Here, to study lipid-protein interactions that contribute to the biogenesis of regulated secretory vesicles, we have developed new approaches by which to label proteins in vivo, using photoactivatable cholesterol and glycerophospholipids. We identify synaptophysin as a major specifically cholesterol-binding protein in PC12 cells and brain synaptic vesicles. Limited cholesterol depletion, which has little effect on total endocytic activity, blocks the biogenesis of synaptic-like microvesicles (SLMVs) from the plasma membrane. We propose that specific interactions between cholesterol and SLMV membrane proteins, such as synaptophysin, contribute to both the segregation of SLMV membrane constit…

Endocytic cycleSynaptophysinKidneyTritiumSynaptic vesiclePC12 CellsExocytosisR-SNARE ProteinsAnimalsHumansNeuronsVAMP2biologyCell MembraneMembrane ProteinsCell BiologySecretory VesicleMicrovesiclesEndocytosisCell biologyRatsCholesterolMembrane proteinSynaptophysinbiology.proteinPhosphatidylcholinesSynaptic VesiclesBiogenesisSynaptosomesNature cell biology
researchProduct

Zinc-positive boutons in the cerebral cortex of lizards show glutamate immunoreactivity

1991

Zinc-positive boutons, originating in the medial cortex of lizards, exhibit glutamate immunoreactivity. This finding supports the presumed homology between lizard zinc-positive boutons and the hippocampal mossy fibres of mammals, which are also glutamate-immunoreactive and zinc-positive. Zinc-positive boutons of lizards contain a chelatable pool of zinc located in the hippocampal mossy fibres of mammals. These synaptic systems also contain glutamate, which indicates a possible simultaneous action of zinc and glutamate during synaptic transmission.

HistologyMedial cortexCentral nervous systemHippocampal formationHippocampusPodarcis hispanicaSynaptic vesicleGlutamatesbiology.animalmental disordersparasitic diseasesmedicineAnimalsCerebral CortexStaining and LabelingbiologyLizardGeneral NeurosciencefungiGlutamate receptorAntibodies MonoclonalLizardsCell BiologyAnatomybiology.organism_classificationZincmedicine.anatomical_structurenervous systemCerebral cortexSynapsesSynaptic Vesiclessense organsAnatomyJournal of Neurocytology
researchProduct

Timm-staining intensity is correlated with the density of Timm-positive presynaptic structures in the cerebral cortex of lizards

1987

In cortical areas of the lizard, Podarcis hispanica, Timm staining reveals a distinct pattern of lamination. At the electron-microscope level, virtually all of the reaction product is located in the synaptic vesicles of Timm-positive boutons. Using linear-regression analysis, the area density of Timm-positive bouton profiles as well as the numerical and volume density of stained vesicles were found to be closely correlated with the light-microscopic densitometric values obtained for each Timm-positive cortical zone. We discuss the possibility of estimating stereological electron-microscopic data parameters from densitometric measurements at the light-microscope level.

HistologyPodarcis hispanicaSynaptic vesicleTimm stainingmedicineAnimalsMolecular BiologyCerebral CortexStaining and LabelingbiologyVesicleLizardsCell BiologyGeneral MedicineAnatomybiology.organism_classificationIntensity (physics)Reaction productMicroscopy ElectronMedical Laboratory Technologymedicine.anatomical_structureCerebral cortexUltrastructureRegression AnalysisSynaptic VesiclesAnatomyGeneral Agricultural and Biological SciencesDensitometryHistochemistry
researchProduct

Isolation of Cholinergic Synaptic Vesicles from the Myenteric Plexus of Guinea-Pig Small Intestine

1980

The acetylcholine-rich myenteric plexus-longitudinal muscle preparation of the guinea-pig small intestine has been subjected to subcellular fractionation using modifications of both classical methods and that originally devised for bulk isolation of cholinergic synaptic vesicles from the electromotor nerve terminals of Torpedo marmorata by means of density gradient centrifugation in a zonal rotor. The latter method gave a vesicle fraction with the highest acetylcholine content so far recorded for a mammalian particulate fraction, 30.9 +/- S.E.M. 1.8 (5) nmol of acetylcholine . mg of protein-1. Electron-microscopical examination showed that it consisted of a homogeneous preparation of vesicl…

MaleGuinea PigsMyenteric PlexusBiologyCell FractionationBiochemistrySynaptic vesiclelaw.inventionCellular and Molecular NeurosciencelawIntestine SmallMyosinCentrifugation Density GradientmedicineAnimalsMyenteric plexusVesicleAcetylcholineMicroscopy ElectronBiochemistryBiophysicsCholinergicFemaleSynaptic VesiclesCell fractionationAcetylcholineTorpedomedicine.drugJournal of Neurochemistry
researchProduct